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Abstract

In General Linear Model (GLM) analyses, it is important to

interpret structure coefficients, alongside standardized

weights, when evaluating variable contribution to observed

effects. Although often used in canonical correlation analysis,

structure coefficients are less frequently employed in multiple

regression and several other multivariate analyses. The present

paper discusses and demonstrates the role of structure

coefficients in multivariate analyses by (a) illustrating

structure coefficients in the univariate context with multiple

regression and (b) using canonical correlation analysis to

demonstrate structure coefficients in the multivariate context.

A small heuristic data set is used to make the demonstration

concretely accessible for applied researchers.



Structure Coefficients 3
struct mult.doc

The Logic and Interpretation of Structure Coefficients in

Multivariate General Linear Model Analyses

It is commonly known that the General Linear Model (GLM)

serves as a general analytic system guiding all classical

parametric analyses. Cohen (1968) demonstrated multiple

regression as the univariate GLM. Knapp (1978) later illustrated

that canonical correlation subsumed not only multiple regression

but other multivariate analyses as the multivariate GLM

umbrella. Structural equation modeling has since been shown as

the most general case of the GLM, allowing simultaneous

measurement and substantive modeling as part of the same

analysis (Bagozzi, Fornell, & Larcker, 1981; Fan, 1997).

Understanding the foundational components of the GLM

affords researchers wider utility and application of the various

GLM analyses. Importantly, all GLM analyses have certain

analytic characteristics in common. All analyses (a) are

correlational in nature, (b) invoke a system of weights that are

applied to observed variables to create synthetic (i.e., latent

or unobserved) variables, (c) typically focus on the synthetic

variables for analytic interest, and (d) yield r2-type effect

sizes.
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Determining Variable Importance

In applied research, it is often important to identify

variables that contribute to the model being tested. For

example, an educational psychologist may use multiple regression

to evaluate whether self-esteem, self-concept, and self-efficacy

are predictive of academic achievement. The researcher likely

cares about which, if any, of the variables is able to predict

achievement and to what degree. Identification of variable

importance, then, is fundamental to many of the analyses we

conduct.

However, within the GLM, all analyses yield r2-type effect

sizes that must be considered prior to evaluating what variables

contributed to this effect. It makes no sense, for example, to

have a miniscule (and uninterpretable) effect size and yet try

to identify variables that contributed to that effect.

Accordingly, Thompson (1997) articulated a two-stage hierarchal

decision strategy that can be used to interpret any GLM

analysis:

All analyses are part of one general linear model. .

When interpreting results in the context of this model,

researchers should generally approach the analysis

hierarchically, by asking two questions:

Do I have anything? (Researchers decide this

question by looking at come combination of statistical
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significant tests, effect sizes . . . and replicability

evidence.)

- If I have something, where do my effects originate?

(Researchers often consult both the standardized weights

implicit in all analyses and structure coefficients to

decide this question.) (p. 31)

Once notable effects have been isolated, then (and only

then) interpretation shifts to the identification of what

variables in the model have contributed to that effect.

Traditionally, the weights (often standardized) present in all

GLM analyses are examined to judge the contribution of a

variable to the effect observed. Using regression as an example,

many researchers would discount the value of a variable with a

small or near-zero p (beta) weight.

The sole interpretation of standardized weights, however,

can lead to erroneous conclusions about variable importance.

Burdenski (in press), Courville and Thompson (2001), Thompson

and Borrello (1985) have documented the drawbacks of only

consulting standardized weights in multiple regression. In GLM

analyses, it is also important to interpret structure

coefficients, alongside standardized weights, when evaluating

variable contribution to the observed effect.

Structure coefficients are much less understood within the

GLM as compared to the role of standardized weights.
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Nevertheless, the reporting and interpretation of structure

coefficients is critical to identification of variable

importance in both univariate and multivariate analyses.

Purpose

The purpose of the present paper is to discuss and

demonstrate the role of structure coefficients in multivariate

analyses. Accordingly, this paper will (a) illustrate structure

coefficients in the univariate context with multiple regression

and (b) use canonical correlation analysis to demonstrate

structure coefficients in the multivariate context. A small

heuristic data set is used to make the demonstration concretely

accessible for applied researchers.

Multiple Regression as a Univariate Example

Where Does an Effect Size Come From?

Fundamental to interpreting any GLM analysis is the size of

the obtained effect, whether that effect be a variance-

accounted-for (e.g., R2
, 112) or mean difference (e.g., Cohen's d)

statistic (cf. Henson & Smith, 2000; Snyder & Lawson, 1993;

Wilkinson & APA Task Force on Statistical Inference, 1999). In

regression, the effect size of interest is R2, which (when

multiplied by 100) is the percentage of variance in the

dependent variable that can be explained by the predictor

variables.
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In a hypothetical scenario where two predictors are

perfectly uncorrelated, the effect size is the sum of the

squared correlations between each predictor and the dependent

variable (Y):

R2 2
+

2
= rYX1 -F YX2 (1)

Equation (1) makes explicit the fact that the relationships

between each predictor and Y are critical to obtaining the

overall effect.

In the real world, however, predictors are usually

correlated to some degree. In such cases the predictors may

explain the same variance in Y, and use of equation (1) would be

inappropriate because dual credit would be given to more than

one predictor. Standardized weights ((3) can be derived, however,

that "split up" the shared variance among the predictors so no

two predictors are given credit for the same explained variance

in Y. The appropriate equation then becomes:

R2 = R1rYxl + R1rYx2 (2)

In the actual analysis, of course, theO weights are applied to

the observed predictor scores (in Z score form) in a linear

equation to yield a synthetic variable consisting of predicted

scores that are as close as possible to the actual Y scores (for

ordinary least squares regression):

I31x1 +131)(2 (3)

8
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Because we care about how close the synthetic Y scores are to

the observed Y scores, the effect size can also be stated as the

squared correlation between the predicted scores and the

dependent variable:

R2 = 2ryf (4)

Equation (4) informs us that the synthetic variable, Y, is

critical in the regression, and therefore critical in result

interpretation.

Additionally, because the effect is in a squared metric, we

can conceptualize the relationship between the predictors and Y

graphically with Venn diagrams by representing the sum of

squares of each variable. For example, in a multiple regression,

assume the R2 = .75 and the relationships between the two

predictors and Y are ryx12 = .50 and ryx12 = .50. If we were to sum

the individual predictors squared relationships with Y, we would

get 100% explained variance, a result larger than the 75%

effect! This tells us the two predictors must be explaining the

some of the same part of the Y variance. If we assume the

relationship between the two predictors is rx1x22 = .25, then the

graphical representation of the model might look like Figure 1.

INSERT FIGURE 1 ABOUT HERE
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Figure 1 demonstrates a case where both predictors explain

some of the Y variance (the Y area), but also explain some of

the same part of the Y variance (the double slashed area). It is

clear that both predictors are equally effective in predicting

the dependent variable. However, the question for the linear

equation (3) is: "What will be the magnitude of the p weights?"

Because standardized weights cannot allow dual credit be

assigned to more than one variable for predicted (Y) area,

within any regression the 13 weights will be derived to either (a)

arbitrarily "split up" the shared predicted area or (b)

arbitrarily assign the entire portion to one of the variables.

However, should the shared area in Figure 1 be

disproportionately divided between the predictors, then one p may

be arbitrarily larger than the other, and therefore suggest that

one variable is more important or contributes more to the

predicted area than the other. Furthermore, if the study were to

be conducted again, the Ps may reverse their magnitudes for the

two variables, a dilemma known as the "bouncing beta" problem.

What is the "Structure" of the Effect?

Because p weights cannot be examined to clearly identify the

relationships between the predictors and the dependent variable

when the predictors are correlated, more information is

necessarily needed to interpret variable importance. Further, in

10
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the GLM, we almost always are concerned with the synthetic

variables for interpretation purposes. In multiple regression,

the Y predicted variable is our primary focus, as suggested by

equation (4). In Figure 1, the sum of squares of Y is

represented by the slashed area, which is 75% (R2) of the total

sum of squares of the dependent variable (or, put alternatively,

R2 = SSexplained/SStotal) - The explanation of what variables

contributed to this effect is central to interpreting variable

importance.

Structure coefficients are called such because they inform

us as to the "structure" or makeup of the effect represented by

the synthetic variable Y. By definition, a structure coefficient

is a simple bivariate correlation between an observed variable

(e.g., predictor) and a synthetic variable (e.g., Y). Notice

that because they are bivariate correlations, structure

coefficients do not take into account the collinearity between

the predictors, and therefore shed important light on the

importance of predictors.

In the Figure 1 example, the squared structure coefficients

between Y and X1 and X2 would both be .67, because both

predictors can account for two-thirds of the explained effect (Y

sum of squares) in and of themselves. Note that both structure

coefficients (unsquared) would be the square root of .67, or +/-

11
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.82, which is interpreted just as a Pearson r. If we sum the two

squared structure coefficients (.67 + .67 = 1.34) the result is

larger than 1.00, due to the fact that there is shared explained

area. It should be apparent that if the predictors were

perfectly uncorrelated, then the sum of the squared structure

coefficients would be 1.00, because the predictors would account

for unique portions of the Y variance.

If standardized weights inform the researcher what

variables are getting credit for the effect, then structure

coefficients inform the researcher what variables could have

gotten credit for the effect. Both coefficients are important,

and both coefficients should be reported and interpreted in

published research. In the above example, the claim that one

variable is better than the other would be unfounded (yet

definitely possible if consulting 0s), and examination of

structure coefficients points to equal contributory value.

So What's the Problem with Multicollinearity?

Multicollinearity, or the presence of correlation between

predictors, is often cited as a problem in multiple regression

and therefore to be avoided. Stevens (2002), for example,

stated:

Multicollinearity poses a real problem for the researcher

using multiple regression for three reasons:

1. It severely limits the size of R, because the

2
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predictors are going after much of the same

variance on y. .

2. Multicollinearity makes determining the importance

of a given predictor difficult because the

effects of the predictors are confounded due to

the correlations among them.

3. Multicollinearity increases the variances of the

regression coefficients. (p. 91-92)

These concerns are merited if considering only p weights,

but they largely become mute when interpreting structure

coefficients. Regarding (1), the predictors may explain the same

part of Y variance, but R is not artificially limited. Of

course, R will not get bigger unless additional portions of

dependent variable variance are explained, but within the GLM,

the addition of predictor variables will only result in R2 either

remaining the same (no additional variance explained) or getting

larger. Regarding (2), structure coefficients clarify variable

importance as noted above. Regarding (3), decisions based solely

on p weights may be impacted by inflated standard errors if using

statistical significance tests. However, structure coefficients

are not impacted by inflated standard errors as they are

descriptive correlational measures. Of course, p standard errors

are only relevant when the researcher depends on statistical
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significance testing, which may obfuscate variable contributions

due to the impact of sample size on null hypothesis tests. The

bottom line is that multicollinearity is not a problem in

multiple regression, and therefore not in any other GLM

analysis, if the researcher invokes structure coefficients in

addition to standardized weights. In fact, in some multivariate

analyses, multicollinearity is actually encouraged, say, for

example, when multi-operationalizing a dependent variable with

several similar measures.

Canonical Correlation as a Multivariate Example

Canonical correlation analysis (CCA) is a natural

multivariate extension of multiple regression with which

researchers can examine the relationship between several

predictors and several dependent variables simultaneously

(Henson, 2000; Thompson, 1984, 1991). In CCA, the several

predictors are linearly combined into one synthetic predictor

variable. This process is directly analogous to the creation of

Y in multiple regression. However, in CCA, the dependent

variables are also linearly combined to create one synthetic

criterion variable (also analogous to f). The canonical

correlation itself is nothing more than a Pearson r correlation

between the synthetic predictor and synthetic criterion

variables. In CCA, this pair of synthetic variables is created

for each canonical function (variate). The first function

maximizes shared variance between the observed predictor and
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dependent variables. Subsequent functions are created (analogous

to factors in factor analysis) that maximize explained variance

for the residual (e.g., unexplained) variance left over from the

previous function.

In CCA, then, there are two synthetic variables for each

function. Because structure coefficients are the correlation

between an observed and a synthetic variable, there are structure

coefficients that explain relationships between both the

predictor and criterion synthetic variables and their respective

observed variable sets.

Table 1 presents a heuristic data set that will be used to

help make the present discussion concrete. In this hypothetical

example, the researcher is investigating whether two variables

related to adult attachment, secure and preoccupied attachment

styles, are predictive of variation in personality styles as

measured by the Big Five" factors: neuroticism, extraversion,

openness, agreeableness, and conscientiousness. Data are

presented as T scores for 10 people. For SECURE and PREOCC, Z

scores are parenthetically presented for later use.

INSERT TABLE 1 ABOUT HERE

The CCA for SECURE and PREOCC predicting NEURO, EXTRA, OPEN,

AGREE, and CONSC yielded a squared canonical correlation of .682

for the first function and .163 for the second function. (Note:

There will be as many functions as there are variables in the

smaller variable set, which in this case is two.) The Appendix

presents the SPSS syntax used for the CCA. Supposing we deem only
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the first function's effect noteworthy, we now concern ourselves

with defining this function by identifying what variables

contributed to the effect.

Table 2 presents the standardized canonical function

coefficients (directly analogous to p weights) and the structure

coefficients for the first function. Examination of only the

function coefficients might lead one to conclude the first

function was largely the result of PREOCC predicting NEURO and

AGREE. The prediction is positive due to the fact that all the

structure coefficients have the same sign. Note as well that we

cannot tell directionality by simply consulting the standardized

weights, because when the observed variables are correlated, the

standardized weights are not direct measures of relationship. In

the present example, this is made explicit by the existence of a

function coefficient greater than one for NEURO.

INSERT TABLE 2 ABOUT HERE

However, examination of the structure coefficients (rs) and

their squared values provides a more complete picture of the

variable relationships. PREOCC is still clearly the best

predictor, but it would be inappropriate to label SECURE as

useless as it can account for over half of the synthetic

predictor variable by itself, a fact obfuscated by the small

standardized weight for SECURE. Additionally, if only consulting

6
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the function coefficients, it appears clear that NEURO and AGREE

are the predominant criterion variables with the rest of the

variables having low or near zero coefficients. Although NEURO

is the dominant criterion variable, the squared structure

coefficients inform us that EXTRA in fact can account for about

one-third of the synthetic criterion variable while AGREE can

account for less than 3%, in spite of having the second largest

standardized weight!

Certainly consultation of only standardized weights can

mask important relationships when variables are correlated. Also

certainly, consultation of structure coefficients clarifies

variable relationships in the presence of multicollinearity,

which is almost always present in applied research.

Construction of the Synthetic/Latent Variables

Table 3 presents the calculations used to create the

synthetic predictor variable for all 10 cases from Table 2. These

calculations make explicit how the standardized weights are

applied to the observed scores (in Z score form) to create the

synthetic predictor variable, which as noted is directly

analogous to Y in multiple regression. Remember that in the CCA,

a similar equation is used that combines the dependent variables

into one synthetic dependent variable. The present discussion,

however, will focus only on the predictor side of the equation.

INSERT TABLE 3 ABOUT HERE
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Canonical Structure Coefficients

The structure coefficients for SECURE and PREOCC can now be

directly calculated from the Table 3 results as the correlations

between the observed SECURE and PREOCC scores and the synthetic

predictor variable created from those scores. These correlations

are .752 and -.973 for SECURE and PREOCC, respectively. Note that

these structure coefficients match exactly those in Table 2

created by the CCA.

Figures 2 and 3 graphically display the relationships

between SECURE and PREOCC with the synthetic variable. In this

scenario, both variables have strong relationships with the

synthetic variable, and therefore should be considered in

interpretation. Of course, consultation of only the function

coefficients would not have led to the same conclusion.

INSERT FIGURES 2 and 3 ABOUT HERE

Structure Coefficients in Other Multivariate Analyses

Structure coefficients are present throughout the GLM, and

typically are necessary for result interpretation. However, the

literature is inconsistent in defining the role of structure

coefficients in various GLM analyses. Burdenski (in press) and

Courville and Thompson (2001) have documented that authors

seldom report structure coefficients in multiple regression and

almost exclusively only consult weights when determining

variable importance.

:18
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In CCA, there is some consensus that structure coefficients

are necessary (cf. Meredith, 1964; Thompson, 1984). As Levine

(1977) argued:

I specifically say that one has to do this [interpret

structure coefficients] since I firmly believe as long as

one wants information about the nature of the canonical

correlation relationship, not merely the computation of the

[synthetic variable] scores, one must have the structure

matrix. (p. 20)

Cohen and Cohen (1983) also noted that "interpretation of a

given canonical variate is best undertaken by means of the

structure coefficients" (p. 456).

Because CCA is the multivariate GLM, and because structure

coefficients are critical for CCA interpretation, it stands to

reason that interpretation of other GLM analyses would also

require structure coefficients. As Huberty (1994) explained,

if a researcher is convinced that the use of structure rs

makes sense in, say, a canonical correlation context, he or

she would also advocate the use of structure rs in the

contexts of multiple correlation, common factor analysis,

and descriptive discriminant analysis. (p. 263)

However, like in multiple regression, structure coefficients

are often ignored in other multivariate analyses. In factor

analysis, for example, factors are uncorrelated when an

19
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orthogonal rotation is used (e.g., varimax). In such cases, the

factor pattern matrix is the same as the factor structure matrix.

The factor structure matrix is found by multiplying the factor

pattern matrix (PV x F) with the factor correlation matrix (11,F).

When the factors are uncorrelated, RFXF is an identity matrix.

Therefore, the structure matrix (S,,) will be the same as the

pattern matrix, such that:

PV X F RF X F = SV X F (5)

This outcome is analogous to a regression with perfectly

uncorrelated predictors, and interpretation of a separate

structure matrix is unnecessary. However, when the factors are

correlated via an oblique rotation, the pattern and structure

matrices will not be identical, and both matrices should be

reported and interpreted, just as one would interpret p weights

and structure coefficients in regression in the presence of

correlated predictors. Unfortunately, empirical reviews of

exploratory factor analyses indicate that structure matrices are

often ignored (Henson, Capraro, & Capraro, 2001; Henson &

Roberts, in press).

Nevertheless, structure coefficients are present throughout

the GLM and should be consulted when considering variable

importance. Table 4 lists several multivariate analyses, along

with common names for the standardized weights used in the

analyses. Also given is a description of what structure

coefficients are correlating in a given analysis.

1)04-
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INSERT TABLE 4 ABOUT HERE

Discussion

When observed predictors/variables are correlated and

combined into a synthetic variable, the definition of observed

effects (e.g., R2) must invoke examination of both standardized

weights and structure coefficients. This is true in multiple

regression, canonical correlation analysis, and throughout the

GLM.

One reasonable alternative to examining structure

coefficients in multiple regression is to consult the

correlations between the predictors and the dependent variable

directly. Indeed, another way to derive structure coefficients is

to divide the correlation between the predictor and dependent

variable by the multiple R:

r), / R (6)

This equation informs us that all regression structure

coefficients are the zero-order correlations between predictors

and the dependent variable divided by a constant (R). Therefore,

these zero-order correlations contain the same information as the

structure coefficients. However, the information is in a

different metric, with structure coefficients representing

relationship with the synthetic effect (Y), which is of primary

interest. So, the decision about whether to interpret the zero-

order correlations with the dependent variable or structure

coefficients depends on the researcher's desire to describe his
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or her results in terms of the effect obtained or the observed

variables.

Pedhazur (1997) also argued that structure coefficients can

be excessively large even when the effect size is not noteworthy.

For example, a tiny R = .01 effect might be found, and if this

effect is almost entirely due to one of the predictors, the

structure coefficient for that predictor might be, say, .90.

However, within the hierarchal strategy for interpreting all GLM

analyses, one would never interpret the origins of an effect

without first declaring the effect to be worth interpreting. In

this context, the concern about misinterpretation seems

unwarranted.

Furthermore, within multivariate analyses, there is not a

single dependent variable with which to correlate the observed

predictors. In this context, structure coefficients are essential

for interpretation.

The present paper has demonstrated the role of both

standardized weights and structure coefficients in univariate and

multivariate analyses. Both coefficients are important for

determining variable importance. Unfortunately, structure

coefficients are often ignored, and overdependence is placed on

standardized weights, perhaps resulting in misinterpretation of

substantive findings. The present paper may serve to inform

applied researchers about (a) the presence of structure

coefficients, (b) the conceptual underpinnings of what a

structure coefficient is, and (c) how to interpret these
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coefficients to determine variable importance in the presence of

multicollinearity.
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Table 1

Heuristic Data for Canonical Correlation Example.

Case No.

Predictor Var. Criterion Var.

SECURE PREOCC NEURO EXTRA OPEN AGREE CONSC

1 35(-1.593) 52( .747) 51 46 57 51 50

2 36(-1.473) 55( 1.268) 53 51 45 52 45
3 45( .386) 51( .573) 48 35 56 55 48
4 45( .386) 49( .226) 54 42 51 38 63
5 48( .024) 54( 1.095) 50 43 38 63 37
6 50( .217) 39(-1.512) 46 50 39 49 39
7 52( .459) 44( .643) 52 48 57 46 43
8 53( .579) 39( 1.512) 39 59 50 53 58
9 59( 1.304) 49( .226) 48 62 43 34 55

10 59( 1.304) 45( .469) 45 50 47 59 53

Note. Values in parentheses for SECURE and PREOCC are Z scores.

Table 2

Standardized Canonical Function Coefficients and Structure
Coefficients for Function One.

Variable Funct. Coef. rs
2

s

SECURE
PREOCC

NEURO
EXTRA
OPEN
AGREE
CONSC

.284

-.809

-1.217
-.163
.064

-.745
-.367

.752

-.973

-.860
.567

-.120
-.165
.190

56.55%
94.67%

73.96%
32.15%
1.44%
2.72%
3.61%

Note. rs = structure coefficient. rs2 = squared structure
coefficient times 100. The largest two function and structure
coefficients for the criterion variables are in bold.
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Table 3

Calculation of the Synthetic Predictor Variable.

SECURE (WEIGHT) + PREOCC (WEIGHT) = Synthetic Predictor

-1.593 (.284) .747 (-.809) -1.057
-1.473 (.284) 1.268 (-.809) -1.444
-.386 (.284) .573 (-.809) -.573
-.386 (.284) .226 (-.809) -.292
-.024 (.284) 1.095 (-.809) -.893
.217 (.284) -1.512 (-.809) 1.285
.459 (.284) -.643 (-.809) .651
.579 (.284) -1.512 (-.809) 1.388

1.304 (.284) .226 (-.809) .188
1.304 (.284) -.469 (-.809) .750

29



S
t
r
u
c
t
u
r
e
 
C
o
e
f
f
i
c
i
e
n
t
s
 
2
9

s
t
r
u
c
t
 
m
u
l
t
.
d
o
c

T
a
b
l
e
 
4

S
t
a
n
d
a
r
d
i
z
e
d
 
W
e
i
g
h
t
s
 
a
n
d
 
S
t
r
u
c
t
u
r
e
 
C
o
e
f
f
i
c
i
e
n
t
s
 
T
h
r
o
u
g
h
o
u
t
 
t
h
e
 
G
e
n
e
r
a
l
 
L
i
n
e
a
r
 
M
o
d
e
l
.

A
n
a
l
y
s
i
s

S
t
a
n
d
a
r
d
i
z
e
d
 
W
e
i
g
h
t
 
A
n
a
l
o
g

S
t
r
u
c
t
u
r
e
 
C
o
e
f
f
i
c
i
e
n
t
s
 
C
o
r
r
e
l
a
t
e
:

M
u
l
t
i
p
l
e
 
r
e
g
r
e
s
s
i
o
n

C
a
n
o
n
i
c
a
l
 
c
o
r
r
e
l
a
t
i
o
n

a
n
a
l
y
s
i
s

D
e
s
c
r
i
p
t
i
v
e
 
d
i
s
c
r
i
m
i
n
a
n
t

a
n
a
l
y
s
i
s

F
a
c
t
o
r
 
a
n
a
l
y
s
i
s

C
o
n
f
i
r
m
a
t
o
r
y
 
f
a
c
t
o
r

a
n
a
l
y
s
i
s

b
e
t
a

(0
)

c
a
n
o
n
i
c
a
l
 
v
a
r
i
a
t
e
/
f
u
n
c
t
i
o
n

c
o
e
f
f
i
c
i
e
n
t
s

O
b
s
e
r
v
e
d
 
p
r
e
d
i
c
t
o
r
s
 
w
i
t
h
 
s
y
n
t
h
e
t
i
c
 
Y
.

O
b
s
e
r
v
e
d
 
p
r
e
d
i
c
t
o
r
s
/
c
r
i
t
e
r
i
o
n
 
v
a
r
i
a
b
l
e
s
 
w
i
t
h

s
y
n
t
h
e
t
i
c
 
c
a
n
o
n
i
c
a
l
 
v
a
r
i
a
t
e
/
f
u
n
c
t
i
o
n
.

d
i
s
c
r
i
m
i
n
a
n
t
 
f
u
n
c
t
i
o
n
 
c
o
e
f
f
i
c
i
e
n
t
s

O
b
s
e
r
v
e
d
 
d
e
p
e
n
d
e
n
t
 
v
a
r
i
a
b
l
e
s
 
w
i
t
h

s
y
n
t
h
e
t
i
c
 
d
i
s
c
r
i
m
i
n
a
n
t
 
f
u
n
c
t
i
o
n
.

p
a
t
t
e
r
n
 
c
o
e
f
f
i
c
i
e
n
t
s

p
a
t
t
e
r
n
 
c
o
e
f
f
i
c
i
e
n
t
s

M
u
l
t
i
v
a
r
i
a
t
e
 
a
n
a
l
y
s
i
s
 
o
f

N
o
 
c
o
n
s
e
n
s
u
s
 
o
n
 
n
a
m
e
/
S
a
m
e
 
a
s

v
a
r
i
a
n
c
e

d
i
s
c
r
i
m
i
n
a
n
t
 
f
u
n
c
t
i
o
n
 
c
o
e
f
f
.

O
b
s
e
r
v
e
d
 
v
a
r
i
a
b
l
e
 
w
i
t
h
 
s
y
n
t
h
e
t
i
c
/
l
a
t
e
n
t

f
a
c
t
o
r
.

O
b
s
e
r
v
e
d
 
v
a
r
i
a
b
l
e
 
w
i
t
h
 
s
y
n
t
h
e
t
i
c
/
l
a
t
e
n
t

f
a
c
t
o
r
.

O
b
s
e
r
v
e
d
 
d
e
p
e
n
d
e
n
t
 
v
a
r
i
a
b
l
e
s
 
w
i
t
h

s
y
n
t
h
e
t
i
c
 
d
e
p
e
n
d
e
n
t
 
v
a
r
i
a
b
l
e
.

30



struct_mult.doc

Y

Structure Coefficients 30

X1

Variance explained

by both predictors

Figure 1. Venn diagram of multiple regression with two predictors

for R2 = .75 with multicollinearity.
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Figure 2. Scatterplot between the observed SECURE predictor and

the synthetic predictor variable.
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title 'structure coefficients demo'.
comment Run canonical correlation.
MANOVA

neuro extra open agree consc WITH secure preocc
/PRINT=SIGNIF(MULTIV EIGEN DIMENR)
/DISCRIM=STAN ESTIM COR ALPHA(.999).
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